it-swarm-fr.com

Filtrage d'un utf8 invalide

J'ai un fichier texte dans un encodage inconnu ou mixte. Je veux voir les lignes qui contiennent une séquence d'octets qui n'est pas UTF-8 valide (en canalisant le fichier texte dans un programme). De manière équivalente, je veux filtrer les lignes qui sont UTF-8 valides. En d'autres termes, je recherche grep [notutf8].

Une solution idéale serait portable, courte et généralisable à d'autres encodages, mais si vous pensez que la meilleure façon est de cuire dans le définition de l'UTF-8 , allez-y.

Si vous souhaitez utiliser grep, vous pouvez faire:

grep -axv '.*' file

dans les locales UTF-8 pour obtenir les lignes qui ont au moins une séquence UTF-8 invalide (cela fonctionne avec GNU Grep au moins).

36
vinc17

Je pense que vous voulez probablement iconv . C'est pour convertir entre des jeux de codes et prend en charge un nombre absurde de formats. Par exemple, pour supprimer tout ce qui n'est pas valide en UTF-8, vous pouvez utiliser:

iconv -c -t UTF-8 < input.txt > output.txt

Sans l'option -c, il signalera des problèmes de conversion en stderr, donc avec la direction du processus, pourriez-vous enregistrer une liste de ceux-ci. Une autre façon serait de supprimer les éléments non UTF8, puis

diff input.txt output.txt

pour une liste des modifications apportées.

33
frabjous

Edit: j'ai corrigé une faute de frappe dans l'expression régulière. Il fallait un '\ x80` pas \80.

Le regex pour filtrer les formulaires UTF-8 invalides, pour l'adhésion stricte à UTF-8, est le suivant

Perl -l -ne '/
 ^( ([\x00-\x7F])              # 1-byte pattern
   |([\xC2-\xDF][\x80-\xBF])   # 2-byte pattern
   |((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF])) # 3-byte pattern
   |((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))       # 4-byte pattern
  )*$ /x or print'

Sortie (des lignes clés.from Test 1):

Codepoint
=========  
00001000  Test=1 mode=strict               valid,invalid,fail=(1000,0,0)          
0000E000  Test=1 mode=strict               valid,invalid,fail=(D800,800,0)          
0010FFFF  mode=strict  test-return=(0,0)   valid,invalid,fail=(10F800,800,0)          

Q. Comment crée-t-on des données de test pour tester une expression rationnelle qui filtre Unicode invalide?
UNE. Créez votre propre algorithme de test UTF-8 et enfreignez ses règles ...
Catch-22 .. Mais alors, comment testez-vous ensuite votre algorithme de test?

L'expression régulière ci-dessus a été testée (en utilisant iconv comme référence) pour chaque valeur entière de 0x00000 à 0x10FFFF .. Cette valeur supérieure étant la valeur entière maximale d'un point de code Unicode

Selon cette wikipedia UTF-8 page ,.

  • UTF-8 code chacun des 1 112 064 points de code du jeu de caractères Unicode, en utilisant un à quatre octets de 8 bits

Ce nombre (1 112 064) équivaut à une plage 0x000000 à 0x10F7FF, qui est 0x0800 timide de la valeur entière maximale réelle pour le codec Unicode le plus élevé: 0x10FFFF

Ce bloc d'entiers est absent du spectre des points de code Unicode, en raison de la nécessité du codage UTF-16 pour aller au-delà de son intention de conception d'origine via un système appelé paires de substitution . Un bloc de 0x0800 entiers a été réservé pour être utilisé par UTF-16 .. Ce bloc couvre la plage0x00D800 à 0x00DFFF. Aucun de ces inteters n'est une valeur Unicode légale et n'est donc pas une valeur UTF-8 non valide.

Dans Test 1 , le regex a été testé par rapport à chaque numéro de la plage de points de code Unicode, et il correspond exactement aux résultats de iconv .. ie. 0x010F7FF valeurs valides et 0x000800 valeurs invalides.

Cependant, le problème se pose maintenant de: * Comment le regex gère-t-il la valeur UTF-8 hors plage; au dessus de 0x010FFFF (UTF-8 peut s'étendre à 6 octets, avec une valeur entière maximale de x7FFFFFFF ?
Pour générer les valeurs d'octets * non-unicode UTF-8 nécessaires, j'ai utilisé la commande suivante:

  Perl -C -e 'print chr 0x'$hexUTF32BE

Pour tester leur validité (d'une certaine manière), j'ai utilisé Gilles' Regex UTF-8 ...

  Perl -l -ne '/
   ^( [\000-\177]                 # 1-byte pattern
     |[\300-\337][\200-\277]      # 2-byte pattern
     |[\340-\357][\200-\277]{2}   # 3-byte pattern
     |[\360-\367][\200-\277]{3}   # 4-byte pattern
     |[\370-\373][\200-\277]{4}   # 5-byte pattern
     |[\374-\375][\200-\277]{5}   # 6-byte pattern
    )*$ /x or print'

La sortie de 'Perl's print chr' correspond au filtrage de l'expression rationnelle de Gilles .. L'un renforce la validité de l'autre .. Je ne peux pas utiliser iconv car il ne gère que le sous-ensemble valide Unicode Standard du plus large (original) Norme UTF-8 ...

Les nunbers impliqués sont assez grands, j'ai donc testé des haut de gamme, bas de gamme, et plusieurs scans progressifs par incréments tels que, 11111, 13579, 33333, 53441 ... Les résultats correspondent tous, donc maintenant il ne reste plus qu'à tester l'expression rationnelle par rapport à ces valeurs de style UTF-8 hors limites (invalide pour Unicode, et donc également invalide pour l'UTF-8 strict lui-même).


Voici les modules de test:

[[ "$(locale charmap)" != "UTF-8" ]] && { echo "ERROR: locale must be UTF-8, but it is $(locale charmap)"; exit 1; }

# Testing the UTF-8 regex
#
# Tests to check that the observed byte-ranges (above) have
#  been  accurately observed and included in the test code and final regex. 
# =========================================================================
: 2 bytes; B2=0 #  run-test=1   do-not-test=0
: 3 bytes; B3=0 #  run-test=1   do-not-test=0
: 4 bytes; B4=0 #  run-test=1   do-not-test=0 

:   regex; Rx=1 #  run-test=1   do-not-test=0

           ((strict=16)); mode[$strict]=strict # iconv -f UTF-16BE  then iconv -f UTF-32BE beyond 0xFFFF)
           ((   lax=32)); mode[$lax]=lax       # iconv -f UTF-32BE  only)

          # modebits=$strict
                  # UTF-8, in relation to UTF-16 has invalid values
                  # modebits=$strict automatically shifts to modebits=$lax
                  # when the tested integer exceeds 0xFFFF
          # modebits=$lax 
                  # UTF-8, in relation to UTF-32, has no restrictione


           # Test 1 Sequentially tests a range of Big-Endian integers
           #      * Unicode Codepoints are a subset ofBig-Endian integers            
           #        ( based on 'iconv' -f UTF-32BE -f UTF-8 )    
           # Note: strict UTF-8 has a few quirks because of UTF-16
                    #    Set modebits=16 to "strictly" test the low range

             Test=1; modebits=$strict
           # Test=2; modebits=$lax
           # Test=3
              mode3wlo=$(( 1*4)) # minimum chars * 4 ( '4' is for UTF-32BE )
              mode3whi=$((10*4)) # minimum chars * 4 ( '4' is for UTF-32BE )


#########################################################################  

# 1 byte  UTF-8 values: Nothing to do; no complexities.

#########################################################################

#  2 Byte  UTF-8 values:  Verifying that I've got the right range values.
if ((B2==1)) ; then  
  echo "# Test 2 bytes for Valid UTF-8 values: ie. values which are in range"
  # =========================================================================
  time \
  for d1 in {194..223} ;do
      #     bin       oct  hex  dec
      # lo  11000010  302   C2  194
      # hi  11011111  337   DF  223
      B2b1=$(printf "%0.2X" $d1)
      #
      for d2 in {128..191} ;do
          #     bin       oct  hex  dec
          # lo  10000000  200   80  128
          # hi  10111111  277   BF  191
          B2b2=$(printf "%0.2X" $d2)
          #
          echo -n "${B2b1}${B2b2}" |
            xxd -p -u -r  |
              iconv -f UTF-8 >/dev/null || { 
                echo "ERROR: Invalid UTF-8 found: ${B2b1}${B2b2}"; exit 20; }
          #
      done
  done
  echo

  # Now do a negated test.. This takes longer, because there are more values.
  echo "# Test 2 bytes for Invalid values: ie. values which are out of range"
  # =========================================================================
  # Note: 'iconv' will treat a leading  \x00-\x7F as a valid leading single,
  #   so this negated test primes the first UTF-8 byte with values starting at \x80
  time \
  for d1 in {128..193} {224..255} ;do 
 #for d1 in {128..194} {224..255} ;do # force a valid UTF-8 (needs $B2b2) 
      B2b1=$(printf "%0.2X" $d1)
      #
      for d2 in {0..127} {192..255} ;do
     #for d2 in {0..128} {192..255} ;do # force a valid UTF-8 (needs $B2b1)
          B2b2=$(printf "%0.2X" $d2)
          #
          echo -n "${B2b1}${B2b2}" |
            xxd -p -u -r |
              iconv -f UTF-8 2>/dev/null && { 
                echo "ERROR: VALID UTF-8 found: ${B2b1}${B2b2}"; exit 21; }
          #
      done
  done
  echo
fi

#########################################################################

#  3 Byte  UTF-8 values:  Verifying that I've got the right range values.
if ((B3==1)) ; then  
  echo "# Test 3 bytes for Valid UTF-8 values: ie. values which are in range"
  # ========================================================================
  time \
  for d1 in {224..239} ;do
      #     bin       oct  hex  dec
      # lo  11100000  340   E0  224
      # hi  11101111  357   EF  239
      B3b1=$(printf "%0.2X" $d1)
      #
      if   [[ $B3b1 == "E0" ]] ; then
          B3b2range="$(echo {160..191})"
          #     bin       oct  hex  dec  
          # lo  10100000  240   A0  160  
          # hi  10111111  277   BF  191
      Elif [[ $B3b1 == "ED" ]] ; then
          B3b2range="$(echo {128..159})"
          #     bin       oct  hex  dec  
          # lo  10000000  200   80  128  
          # hi  10011111  237   9F  159
      else
          B3b2range="$(echo {128..191})"
          #     bin       oct  hex  dec
          # lo  10000000  200   80  128
          # hi  10111111  277   BF  191
      fi
      # 
      for d2 in $B3b2range ;do
          B3b2=$(printf "%0.2X" $d2)
          echo "${B3b1} ${B3b2} xx"
          #
          for d3 in {128..191} ;do
              #     bin       oct  hex  dec
              # lo  10000000  200   80  128
              # hi  10111111  277   BF  191
              B3b3=$(printf "%0.2X" $d3)
              #
              echo -n "${B3b1}${B3b2}${B3b3}" |
                xxd -p -u -r  |
                  iconv -f UTF-8 >/dev/null || { 
                    echo "ERROR: Invalid UTF-8 found: ${B3b1}${B3b2}${B3b3}"; exit 30; }
              #
          done
      done
  done
  echo

  # Now do a negated test.. This takes longer, because there are more values.
  echo "# Test 3 bytes for Invalid values: ie. values which are out of range"
  # =========================================================================
  # Note: 'iconv' will treat a leading  \x00-\x7F as a valid leading single,
  #   so this negated test primes the first UTF-8 byte with values starting at \x80
  #
  # real     26m28.462s \ 
  # user     27m12.526s  | stepping by 2
  # sys      13m11.193s /
  #
  # real    239m00.836s \
  # user    225m11.108s  | stepping by 1
  # sys     120m00.538s /
  #
  time \
  for d1 in {128..223..1} {240..255..1} ;do 
 #for d1 in {128..224..1} {239..255..1} ;do # force a valid UTF-8 (needs $B2b2,$B3b3) 
      B3b1=$(printf "%0.2X" $d1)
      #
      if   [[ $B3b1 == "E0" ]] ; then
          B3b2range="$(echo {0..159..1} {192..255..1})"
         #B3b2range="$(> {192..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
      Elif [[ $B3b1 == "ED" ]] ; then
          B3b2range="$(echo {0..127..1} {160..255..1})"
         #B3b2range="$(echo {0..128..1} {160..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
      else
          B3b2range="$(echo {0..127..1} {192..255..1})"
         #B3b2range="$(echo {0..128..1} {192..255..1})" # force a valid UTF-8 (needs $B3b1,$B3b3)
      fi
      for d2 in $B3b2range ;do
          B3b2=$(printf "%0.2X" $d2)
          echo "${B3b1} ${B3b2} xx"
          #
          for d3 in {0..127..1} {192..255..1} ;do
         #for d3 in {0..128..1} {192..255..1} ;do # force a valid UTF-8 (needs $B2b1)
              B3b3=$(printf "%0.2X" $d3)
              #
              echo -n "${B3b1}${B3b2}${B3b3}" |
                xxd -p -u -r |
                  iconv -f UTF-8 2>/dev/null && { 
                    echo "ERROR: VALID UTF-8 found: ${B3b1}${B3b2}${B3b3}"; exit 31; }
              #
          done
      done
  done
  echo

fi

#########################################################################

#  Brute force testing in the Astral Plane will take a VERY LONG time..
#  Perhaps selective testing is more appropriate, now that the previous tests 
#     have panned out okay... 
#  
#  4 Byte  UTF-8 values:
if ((B4==1)) ; then  
  echo "# Test 4 bytes for Valid UTF-8 values: ie. values which are in range"
  # ==================================================================
  # real    58m18.531s \
  # user    56m44.317s  | 
  # sys     27m29.867s /
  time \
  for d1 in {240..244} ;do
      #     bin       oct  hex  dec
      # lo  11110000  360   F0  240
      # hi  11110100  364   F4  244  -- F4 encodes some values greater than 0x10FFFF;
      #                                    such a sequence is invalid.
      B4b1=$(printf "%0.2X" $d1)
      #
      if   [[ $B4b1 == "F0" ]] ; then
        B4b2range="$(echo {144..191})" ## f0 90 80 80  to  f0 bf bf bf
        #     bin       oct  hex  dec          010000  --  03FFFF 
        # lo  10010000  220   90  144  
        # hi  10111111  277   BF  191
        #                            
      Elif [[ $B4b1 == "F4" ]] ; then
        B4b2range="$(echo {128..143})" ## f4 80 80 80  to  f4 8f bf bf
        #     bin       oct  hex  dec          100000  --  10FFFF 
        # lo  10000000  200   80  128  
        # hi  10001111  217   8F  143  -- F4 encodes some values greater than 0x10FFFF;
        #                                    such a sequence is invalid.
      else
        B4b2range="$(echo {128..191})" ## fx 80 80 80  to  f3 bf bf bf
        #     bin       oct  hex  dec          0C0000  --  0FFFFF
        # lo  10000000  200   80  128          0A0000
        # hi  10111111  277   BF  191
      fi
      #
      for d2 in $B4b2range ;do
          B4b2=$(printf "%0.2X" $d2)
          #
          for d3 in {128..191} ;do
              #     bin       oct  hex  dec
              # lo  10000000  200   80  128
              # hi  10111111  277   BF  191
              B4b3=$(printf "%0.2X" $d3)
              echo "${B4b1} ${B4b2} ${B4b3} xx"
              #
              for d4 in {128..191} ;do
                  #     bin       oct  hex  dec
                  # lo  10000000  200   80  128
                  # hi  10111111  277   BF  191
                  B4b4=$(printf "%0.2X" $d4)
                  #
                  echo -n "${B4b1}${B4b2}${B4b3}${B4b4}" |
                    xxd -p -u -r  |
                      iconv -f UTF-8 >/dev/null || { 
                        echo "ERROR: Invalid UTF-8 found: ${B4b1}${B4b2}${B4b3}${B4b4}"; exit 40; }
                  #
              done
          done
      done
  done
  echo "# Test 4 bytes for Valid UTF-8 values: END"
  echo
fi

########################################################################
# There is no test (yet) for negated range values in the astral plane. #  
#                           (all negated range values must be invalid) #
#  I won't bother; This was mainly for me to ge the general feel of    #     
#   the tests, and the final test below should flush anything out..    #
# Traversing the intire UTF-8 range takes quite a while...             #
#   so no need to do it twice (albeit in a slightly different manner)  #
########################################################################

################################
### The construction of:    ####
###  The Regular Expression ####
###      (de-construction?) ####
################################

#     BYTE 1                BYTE 2       BYTE 3      BYTE 4 
# 1: [\x00-\x7F]
#    ===========
#    ([\x00-\x7F])
#
# 2: [\xC2-\xDF]           [\x80-\xBF]
#    =================================
#    ([\xC2-\xDF][\x80-\xBF])
# 
# 3: [\xE0]                [\xA0-\xBF]  [\x80-\xBF]   
#    [\xED]                [\x80-\x9F]  [\x80-\xBF]
#    [\xE1-\xEC\xEE-\xEF]  [\x80-\xBF]  [\x80-\xBF]
#    ==============================================
#    ((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))
#
# 4  [\xF0]                [\x90-\xBF]  [\x80-\xBF]  [\x80-\xBF]    
#    [\xF1-\xF3]           [\x80-\xBF]  [\x80-\xBF]  [\x80-\xBF]
#    [\xF4]                [\x80-\x8F]  [\x80-\xBF]  [\x80-\xBF]
#    ===========================================================
#    ((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))
#
# The final regex
# ===============
# 1-4:  (([\x00-\x7F])|([\xC2-\xDF][\x80-\xBF])|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})))
# 4-1:  (((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|([\xC2-\xDF][\x80-\xBF])|([\x00-\x7F]))


#######################################################################
#  The final Test; for a single character (multi chars to follow)     #  
#   Compare the return code of 'iconv' against the 'regex'            #
#   for the full range of 0x000000 to 0x10FFFF                        #
#                                                                     #     
#  Note; this script has 3 modes:                                     #
#        Run this test TWICE, set each mode Manually!                 #     
#                                                                     #     
#     1. Sequentially test every value from 0x000000 to 0x10FFFF      #     
#     2. Throw a spanner into the works! Force random byte patterns   #     
#     2. Throw a spanner into the works! Force random longer strings  #     
#        ==============================                               #     
#                                                                     #     
#  Note: The purpose of this routine is to determine if there is any  #
#        difference how 'iconv' and 'regex' handle the same data      #  
#                                                                     #     
#######################################################################
if ((Rx==1)) ; then
  # real    191m34.826s
  # user    158m24.114s
  # sys      83m10.676s
  time { 
  invalCt=0
  validCt=0
   failCt=0
  decBeg=$((0x00110000)) # incement by decimal integer
  decMax=$((0x7FFFFFFF)) # incement by decimal integer
  # 
  for ((CPDec=decBeg;CPDec<=decMax;CPDec+=13247)) ;do
      ((D==1)) && echo "=========================================================="
      #
      # Convert decimal integer '$CPDec' to Hex-digits; 6-long  (dec2hex)
      hexUTF32BE=$(printf '%0.8X\n' $CPDec)  # hexUTF32BE

      # progress count  
      if (((CPDec%$((0x1000)))==0)) ;then
          ((Test>2)) && echo
          echo "$hexUTF32BE  Test=$Test mode=${mode[$modebits]}            "
      fi
      if   ((Test==1 || Test==2 ))
      then # Test 1. Sequentially test every value from 0x000000 to 0x10FFFF
          #
          if   ((Test==2)) ; then
              bits=32
              UTF8="$( Perl -C -e 'print chr 0x'$hexUTF32BE |
                Perl -l -ne '/^(  [\000-\177]
                                | [\300-\337][\200-\277]
                                | [\340-\357][\200-\277]{2}
                                | [\360-\367][\200-\277]{3}
                                | [\370-\373][\200-\277]{4}
                                | [\374-\375][\200-\277]{5}
                               )*$/x and print' |xxd -p )"
              UTF8="${UTF8%0a}"
              [[ -n "$UTF8" ]] \
                    && rcIco32=0 || rcIco32=1
                       rcIco16=

          Elif ((modebits==strict && CPDec<=$((0xFFFF)))) ;then
              bits=16
              UTF8="$( echo -n "${hexUTF32BE:4}" |
                xxd -p -u -r |
                  iconv -f UTF-16BE -t UTF-8 2>/dev/null)" \
                    && rcIco16=0 || rcIco16=1  
                       rcIco32=
          else
              bits=32
              UTF8="$( echo -n "$hexUTF32BE" |
                xxd -p -u -r |
                  iconv -f UTF-32BE -t UTF-8 2>/dev/null)" \
                    && rcIco32=0 || rcIco32=1
                       rcIco16=
          fi
          # echo "1 mode=${mode[$modebits]}-$bits  rcIconv: (${rcIco16},${rcIco32})  $hexUTF32BE "
          #
          #
          #
          if ((${rcIco16}${rcIco32}!=0)) ;then
              # 'iconv -f UTF-16BE' failed produce a reliable UTF-8
              if ((bits==16)) ;then
                  ((D==1)) &&           echo "bits-$bits rcIconv: error    $hexUTF32BE .. 'strict' failed, now trying 'lax'"
                  #  iconv failed to create a  'srict' UTF-8 so   
                  #      try UTF-32BE to get a   'lax' UTF-8 pattern    
                  UTF8="$( echo -n "$hexUTF32BE" |
                    xxd -p -u -r |
                      iconv -f UTF-32BE -t UTF-8 2>/dev/null)" \
                        && rcIco32=0 || rcIco32=1
                  #echo "2 mode=${mode[$modebits]}-$bits  rcIconv: (${rcIco16},${rcIco32})  $hexUTF32BE "
                  if ((rcIco32!=0)) ;then
                      ((D==1)) &&               echo -n "bits-$bits rcIconv: Cannot gen UTF-8 for: $hexUTF32BE"
                      rcIco32=1
                  fi
              fi
          fi
          # echo "3 mode=${mode[$modebits]}-$bits  rcIconv: (${rcIco16},${rcIco32})  $hexUTF32BE "
          #
          #
          #
          if ((rcIco16==0 || rcIco32==0)) ;then
              # 'strict(16)' OR 'lax(32)'... 'iconv' managed to generate a UTF-8 pattern  
                  ((D==1)) &&       echo -n "bits-$bits rcIconv: pattern* $hexUTF32BE"
                  ((D==1)) &&       if [[ $bits == "16" && $rcIco32 == "0" ]] ;then 
                  echo " .. 'lax' UTF-8 produced a pattern"
              else
                  echo
              fi
               # regex test
              if ((modebits==strict)) ;then
                 #rxOut="$(echo -n "$UTF8" |Perl -l -ne '/^(([\x00-\x7F])|([\xC2-\xDF][\x80-\xBF])|((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))|((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2})))*$/ or print' )"
                                     rxOut="$(echo -n "$UTF8" |
                  Perl -l -ne '/^( ([\x00-\x7F])             # 1-byte pattern
                                  |([\xC2-\xDF][\x80-\xBF])  # 2-byte pattern
                                  |((([\xE0][\xA0-\xBF])|([\xED][\x80-\x9F])|([\xE1-\xEC\xEE-\xEF][\x80-\xBF]))([\x80-\xBF]))  # 3-byte pattern
                                  |((([\xF0][\x90-\xBF])|([\xF1-\xF3][\x80-\xBF])|([\xF4][\x80-\x8F]))([\x80-\xBF]{2}))        # 4-byte pattern
                                 )*$ /x or print' )"
               else
                  if ((Test==2)) ;then
                      rx="$(echo -n "$UTF8" |Perl -l -ne '/^([\000-\177]|[\300-\337][\200-\277]|[\340-\357][\200-\277]{2}|[\360-\367][\200-\277]{3}|[\370-\373][\200-\277]{4}|[\374-\375][\200-\277]{5})*$/ and print')"
                      [[ "$UTF8" != "$rx" ]] && rxOut="$UTF8" || rxOut=
                      rx="$(echo -n "$rx" |sed -e "s/\(..\)/\1 /g")"  
                  else 
                      rxOut="$(echo -n "$UTF8" |Perl -l -ne '/^([\000-\177]|[\300-\337][\200-\277]|[\340-\357][\200-\277]{2}|[\360-\367][\200-\277]{3}|[\370-\373][\200-\277]{4}|[\374-\375][\200-\277]{5})*$/ or print' )"
                  fi
              fi
              if [[ "$rxOut" == "" ]] ;then
                ((D==1)) &&           echo "        rcRegex: ok"
                  rcRegex=0
              else
                  ((D==1)) &&           echo -n "bits-$bits rcRegex: error    $hexUTF32BE .. 'strict' failed,"
                  ((D==1)) &&           if [[  "12" == *$Test* ]] ;then 
                                            echo # "  (codepoint) Test $Test" 
                                        else
                                            echo
                                        fi
                  rcRegex=1
              fi
          fi
          #
      Elif [[ $Test == 2 ]]
      then # Test 2. Throw a randomizing spanner into the works! 
          #          Then test the  arbitary bytes ASIS
          #
          hexLineRand="$(echo -n "$hexUTF32BE" |
            sed -re "s/(.)(.)(.)(.)(.)(.)(.)(.)/\1\n\2\n\3\n\4\n\5\n\6\n\7\n\8/" |
              sort -R |
                tr -d '\n')"
          # 
      Elif [[ $Test == 3 ]]
      then # Test 3. Test single UTF-16BE bytes in the range 0x00000000 to 0x7FFFFFFF
          #
          echo "Test 3 is not properly implemented yet.. Exiting"
          exit 99 
      else
          echo "ERROR: Invalid mode"
          exit
      fi
      #
      #
      if ((Test==1 || Test=2)) ;then
          if ((modebits==strict && CPDec<=$((0xFFFF)))) ;then
              ((rcIconv=rcIco16))
          else
              ((rcIconv=rcIco32))
          fi
          if ((rcRegex!=rcIconv)) ;then
              [[ $Test != 1 ]] && echo
              if ((rcRegex==1)) ;then
                  echo "ERROR: 'regex' ok, but NOT 'iconv': ${hexUTF32BE} "
              else
                  echo "ERROR: 'iconv' ok, but NOT 'regex': ${hexUTF32BE} "
              fi
              ((failCt++));
          Elif ((rcRegex!=0)) ;then
            # ((invalCt++)); echo -ne "$hexUTF32BE  exit-codes $${rcIco16}${rcIco32}=,$rcRegex\t: $(printf "%0.8X\n" $invalCt)\t$hexLine$(printf "%$(((mode3whi*2)-${#hexLine}))s")\r"
              ((invalCt++)) 
          else
              ((validCt++)) 
          fi
          if   ((Test==1)) ;then
              echo -ne "$hexUTF32BE "    "mode=${mode[$modebits]}  test-return=($rcIconv,$rcRegex)   valid,invalid,fail=($(printf "%X" $validCt),$(printf "%X" $invalCt),$(printf "%X" $failCt))          \r"
          else 
              echo -ne "$hexUTF32BE $rx mode=${mode[$modebits]} test-return=($rcIconv,$rcRegex)  val,inval,fail=($(printf "%X" $validCt),$(printf "%X" $invalCt),$(printf "%X" $failCt))\r"
          fi
      fi
  done
  } # End time
fi
exit
21
Peter.O

Je trouve uconv (dans icu-devtools package dans Debian) utile pour inspecter les données UTF-8:

$ print '\\xE9 \xe9 \u20ac \ud800\udc00 \U110000' |
    uconv --callback escape-c -t us
\xE9 \xE9 \u20ac \xED\xA0\x80\xED\xB0\x80 \xF4\x90\x80\x80

(Le \xs aide à repérer les caractères invalides (à l'exception du faux positif volontairement introduit avec un littéral \xE9 au dessus de)).

(plein d'autres usages niçois).

7
Stéphane Chazelas

Python a eu une fonction unicode intégrée depuis la version 2.0.

#!/usr/bin/env python2
import sys
for line in sys.stdin:
    try:
        unicode(line, 'utf-8')
    except UnicodeDecodeError:
        sys.stdout.write(line)

Dans Python 3, unicode a été plié en str . Il doit être passé un comme des octets) object , ici les objets buffer sous-jacents pour les descripteurs standard .

#!/usr/bin/env python3
import sys
for line in sys.stdin.buffer:
    try:
        str(line, 'utf-8')
    except UnicodeDecodeError:
        sys.stdout.buffer.write(line)

Je suis tombé sur un problème similaire (détail dans la section "Contexte") et suis arrivé avec la solution ftfy_line_by_line.py suivante:

#!/usr/bin/env python3
import ftfy, sys
with open(sys.argv[1], mode='rt', encoding='utf8', errors='replace') as f:
  for line in f:
    sys.stdout.buffer.write(ftfy.fix_text(line).encode('utf8', 'replace'))
    #print(ftfy.fix_text(line).rstrip().decode(encoding="utf-8", errors="replace"))

Utiliser encode + replace + ftfy pour corriger automatiquement Mojibake et d'autres corrections.

Le contexte

J'ai collecté> 10 Go CSV de métadonnées de base du système de fichiers en utilisant le script gen_basic_files_metadata.csv.sh suivant, qui fonctionne essentiellement:

find "${path}" -type f -exec stat --format="%i,%Y,%s,${hostname},%m,%n" "{}" \;

Le problème que j'ai eu était avec le codage incohérent des noms de fichiers sur les systèmes de fichiers, provoquant UnicodeDecodeError lors d'un traitement ultérieur avec python ( csvsql pour être plus précis).

Par conséquent, j'ai appliqué le script ftfy ci-dessus, et il a fallu

Veuillez noter ftfy est assez lent, le traitement de ces> 10 Go a pris:

real    147m35.182s
user    146m14.329s
sys     2m8.713s

tandis que sha256sum pour comparaison:

real    6m28.897s
user    1m9.273s
sys     0m6.210s

sur processeur Intel (R) Core (TM) i7-3520M à 2,90 GHz + 16 Go RAM (et données sur disque externe)

1